POST
/
cite
curl -X POST "https://prod.visionapi.unsiloed.ai/cite" \
  -H "accept: application/json" \
  -H "api-key: your-api-key" \
  -H "Content-Type: multipart/form-data" \
  -F "pdf_file=@document.pdf;type=application/pdf" \
  -F "schema_data={\"type\":\"object\",\"properties\":{\"title\":{\"type\":\"string\",\"description\":\"Document title\"},\"authors\":{\"type\":\"array\",\"description\":\"List of authors\",\"items\":{\"type\":\"string\"}}},\"required\":[\"title\",\"authors\"],\"additionalProperties\":false}"
{
  "job_id": "945b4578-691f-4c74-8184-dde654093b11",
  "status": "queued",
  "message": "PDF citation processing started",
  "quota_remaining": 48988
}

Overview

The Extract Data endpoint processes PDF documents and extracts structured information based on custom schemas. This is ideal for extracting specific data points, citations, references, and structured content from documents using AI-powered analysis.
The endpoint returns a job ID for asynchronous processing. Use the job management endpoints to check status and retrieve results.

Request

pdf_file
file
required
The PDF file to process for data extraction. Maximum file size: 100MB
schema_data
string
required
JSON schema defining the structure and fields to extract from the document. Must be a valid JSON Schema format with type definitions, properties, and required fields.

Response

job_id
string
Unique identifier for the extraction job
status
string
Initial job status (typically “queued”)
message
string
Descriptive message about the job creation
quota_remaining
number
Number of Credits remaining in your quota

Extraction Results Format

Once the job is completed, the results will contain the extracted data with additional metadata:
[field_name]
object
Each extracted field returns an object with the following structure:
[field_name].value
string|number|array|object
The extracted value matching the schema type
[field_name].score
number
Confidence score between 0 and 1 indicating extraction accuracy
[field_name].bboxes
array
Array of bounding box coordinates where the data was found in the document
[field_name].bboxes[].bbox
array
Bounding box coordinates [x1, y1, x2, y2] in pixels
[field_name].page_no
number
Page number where the data was extracted (1-indexed)
min_confidence_score
number
Minimum confidence score across all extracted fields

Example Extraction Results

For a simple financial document schema:
Schema
{
  "type": "object",
  "properties": {
    "Individuals": {
      "type": "string",
      "description": "Percentage Holding"
    },
    "LIC of India": {
      "type": "string",
      "description": "No of Shares Held"
    },
    "United bank of india": {
      "type": "string",
      "description": "No of shares held by United bank of india"
    }
  },
  "required": [
    "Individuals",
    "LIC of India",
    "United bank of india"
  ],
  "additionalProperties": false
}
Extraction Results
{
  "Individuals": {
    "score": 0.9998314521743098,
    "value": "10.57",
    "bboxes": [
      {
        "bbox": [
          79,
          381,
          524,
          565
        ]
      }
    ],
    "page_no": 2
  },
  "LIC of India": {
    "score": 0.9999889986487799,
    "value": "1515000",
    "bboxes": [
      {
        "bbox": [
          79,
          381,
          524,
          565
        ]
      }
    ],
    "page_no": 2
  },
  "United bank of india": {
    "score": 0.999984548437705,
    "value": "500000",
    "bboxes": [
      {
        "bbox": [
          79,
          381,
          524,
          565
        ]
      }
    ],
    "page_no": 2
  },
  "min_confidence_score": 0.9998314521743098
}
curl -X POST "https://prod.visionapi.unsiloed.ai/cite" \
  -H "accept: application/json" \
  -H "api-key: your-api-key" \
  -H "Content-Type: multipart/form-data" \
  -F "pdf_file=@document.pdf;type=application/pdf" \
  -F "schema_data={\"type\":\"object\",\"properties\":{\"title\":{\"type\":\"string\",\"description\":\"Document title\"},\"authors\":{\"type\":\"array\",\"description\":\"List of authors\",\"items\":{\"type\":\"string\"}}},\"required\":[\"title\",\"authors\"],\"additionalProperties\":false}"
{
  "job_id": "945b4578-691f-4c74-8184-dde654093b11",
  "status": "queued",
  "message": "PDF citation processing started",
  "quota_remaining": 48988
}

JSON Schema Definition

The schema_data parameter must be a valid JSON Schema that defines the structure of data to extract. All schemas must follow the JSON Schema specification with proper type definitions, properties, and constraints.

Basic Schema Structure

All extraction schemas must include:
  • type: “object” (root level)
  • properties: Object defining the fields to extract
  • required: Array of required field names
  • additionalProperties: Set to false for strict validation

Financial Document Schema Example

This example demonstrates extracting shareholding patterns and board information from financial documents:
{
  "type": "object",
  "properties": {
    "Individuals": {
      "type": "string",
      "description": "Percentage Holding"
    },
    "LIC of India": {
      "type": "number",
      "description": "No of Shares Held"
    },
    "board of directors": {
      "type": "array",
      "description": "list of names of board of directors",
      "items": {
        "type": "object",
        "required": [
          "names of board of directors"
        ],
        "properties": {
          "names of board of directors": {
            "type": "string",
            "description": "names of all the members of board of directors of ACRE"
          }
        },
        "additionalProperties": false
      }
    },
    "shareholding pattern": {
      "type": "array",
      "description": "shareholding pattern",
      "items": {
        "type": "object",
        "required": [
          "name of shareholders",
          "number of shares held"
        ],
        "properties": {
          "name of shareholders": {
            "type": "string",
            "description": "name of the shareholders in ACRE Table"
          },
          "number of shares held": {
            "type": "string",
            "description": "numbers of shares held by shareholders in ACRE Table"
          }
        },
        "additionalProperties": false
      }
    }
  },
  "required": [
    "Individuals",
    "LIC of India",
    "board of directors",
    "shareholding pattern"
  ],
  "additionalProperties": false
}

Advanced Financial Schema Example

This example shows a more complex schema for extracting detailed shareholding information:
{
  "type": "object",
  "properties": {
    "shares held by Punjab National bank": {
      "type": "string",
      "description": "shares held by Punjab National bank"
    },
    "shares held by IFCI": {
      "type": "string",
      "description": "shares held by IFCI"
    },
    "shareholding pattern": {
      "type": "object",
      "description": "shareholding pattern",
      "properties": {
        "Percentage holding": {
          "type": "array",
          "description": "percentage holding of shareholders in ACRE",
          "items": {
            "type": "string",
            "description": "percentage holding of shareholders in ACRE"
          }
        },
        "Name of shareholders": {
          "type": "array",
          "description": "Names of shareholders in ACRE",
          "items": {
            "type": "string",
            "description": "Names of shareholders in ACRE"
          }
        }
      },
      "required": ["Percentage holding", "Name of shareholders"],
      "additionalProperties": false
    },
    "names of board of directors": {
      "type": "array",
      "description": "list of names of members of board of directors in ACRE",
      "items": {
        "type": "object",
        "properties": {
          "names of board of directors": {
            "type": "string",
            "description": "list of names of members of board of directors in ACRE"
          }
        },
        "required": ["names of board of directors"],
        "additionalProperties": false
      }
    }
  },
  "required": [
    "shares held by Punjab National bank", 
    "shares held by IFCI", 
    "shareholding pattern", 
    "names of board of directors"
  ],
  "additionalProperties": false
}

Citation Extraction Schema

{
  "type": "object",
  "properties": {
    "title": {
      "type": "string",
      "description": "Document title or paper title"
    },
    "authors": {
      "type": "array",
      "description": "List of author names",
      "items": {
        "type": "string"
      }
    },
    "publication_date": {
      "type": "string",
      "description": "Publication date in YYYY-MM-DD format"
    },
    "journal_name": {
      "type": "string",
      "description": "Name of journal or publication venue"
    },
    "doi": {
      "type": "string",
      "description": "Digital Object Identifier"
    },
    "abstract": {
      "type": "string",
      "description": "Document abstract or summary"
    },
    "keywords": {
      "type": "array",
      "description": "Key terms and subject keywords",
      "items": {
        "type": "string"
      }
    },
    "references": {
      "type": "array",
      "description": "List of cited references",
      "items": {
        "type": "string"
      }
    }
  },
  "required": ["title", "authors"],
  "additionalProperties": false
}
{
  "type": "object",
  "properties": {
    "document_type": {
      "type": "string",
      "description": "Type of legal document (contract, agreement, etc.)"
    },
    "parties": {
      "type": "array",
      "description": "Names of parties involved",
      "items": {
        "type": "object",
        "properties": {
          "name": {
            "type": "string",
            "description": "Party name"
          },
          "role": {
            "type": "string",
            "description": "Party role (e.g., buyer, seller, contractor)"
          }
        },
        "required": ["name", "role"],
        "additionalProperties": false
      }
    },
    "effective_date": {
      "type": "string",
      "description": "Document effective date"
    },
    "key_terms": {
      "type": "array",
      "description": "Important terms and conditions",
      "items": {
        "type": "string"
      }
    },
    "obligations": {
      "type": "array",
      "description": "Key obligations and responsibilities",
      "items": {
        "type": "object",
        "properties": {
          "party": {
            "type": "string",
            "description": "Party responsible for the obligation"
          },
          "obligation": {
            "type": "string",
            "description": "Description of the obligation"
          }
        },
        "required": ["party", "obligation"],
        "additionalProperties": false
      }
    }
  },
  "required": ["document_type", "parties", "effective_date"],
  "additionalProperties": false
}

JSON Schema Field Types

string
string
Text content, single values. Use for names, descriptions, dates as text.
number
number
Numeric values, amounts, quantities. Use for counts, percentages, monetary values.
integer
integer
Whole numbers only. Use for counts, IDs, years.
boolean
boolean
True/false values. Use for yes/no questions, flags.
array
array
Lists of items. Must include items property defining the type of array elements.
object
object
Structured data with nested fields. Must include properties defining nested structure.
null
null
Null values. Can be combined with other types using array notation: ["string", "null"]

Job Management Integration

After creating an extraction job, use the job management endpoints to monitor progress:
import time
import requests

def wait_for_extraction_completion(job_id, api_key):
    """Poll job status until completion"""
    
    headers = {"api-key": api_key}
    status_url = f"https://prod.visionapi.unsiloed.ai/jobs/{job_id}"
    
    while True:
        response = requests.get(status_url, headers=headers)
        
        if response.status_code == 200:
            status_data = response.json()
            print(f"Job status: {status_data['status']}")
            
            if status_data['status'] == 'completed':
                # Get results
                results_url = f"https://prod.visionapi.unsiloed.ai/jobs/{job_id}/results"
                results_response = requests.get(results_url, headers=headers)
                
                if results_response.status_code == 200:
                    return results_response.json()
                else:
                    raise Exception(f"Failed to get results: {results_response.text}")
                    
            elif status_data['status'] == 'failed':
                raise Exception(f"Job failed: {status_data.get('error', 'Unknown error')}")
                
        time.sleep(5)  # Wait 5 seconds before next check

# Usage
job_id = "945b4578-691f-4c74-8184-dde654093b11"
results = wait_for_extraction_completion(job_id, "your-api-key")
print("Extraction completed:", results)

Advanced Schema Patterns

Nested Object Structures

For complex documents with hierarchical data:
{
  "type": "object",
  "properties": {
    "company_info": {
      "type": "object",
      "description": "Company identification and basic information",
      "properties": {
        "name": {
          "type": "string",
          "description": "Full company name"
        },
        "ticker": {
          "type": "string",
          "description": "Stock ticker symbol"
        },
        "sector": {
          "type": "string",
          "description": "Business sector"
        }
      },
      "required": ["name"],
      "additionalProperties": false
    },
    "financial_data": {
      "type": "object",
      "description": "Financial metrics and performance data",
      "properties": {
        "revenue": {
          "type": "number",
          "description": "Total revenue"
        },
        "profit_margin": {
          "type": "number",
          "description": "Profit margin percentage"
        }
      },
      "required": ["revenue"],
      "additionalProperties": false
    }
  },
  "required": ["company_info", "financial_data"],
  "additionalProperties": false
}

Array of Complex Objects

For extracting lists of structured data:
{
  "type": "object",
  "properties": {
    "transactions": {
      "type": "array",
      "description": "List of financial transactions",
      "items": {
        "type": "object",
        "properties": {
          "date": {
            "type": "string",
            "description": "Transaction date"
          },
          "amount": {
            "type": "number",
            "description": "Transaction amount"
          },
          "description": {
            "type": "string",
            "description": "Transaction description"
          },
          "category": {
            "type": "string",
            "description": "Transaction category"
          }
        },
        "required": ["date", "amount", "description"],
        "additionalProperties": false
      }
    }
  },
  "required": ["transactions"],
  "additionalProperties": false
}

Error Handling

400
Bad Request
Invalid JSON schema format or missing required parameters
401
Unauthorized
Invalid or missing API key
413
Payload Too Large
File size exceeds 100MB limit
422
Unprocessable Entity
Invalid file format, malformed JSON schema, or processing error
429
Too Many Requests
Rate limit exceeded or quota exhausted
500
Internal Server Error
Server error during processing

Authorizations

api-key
string
header
required

Body

multipart/form-data

Response

200 - application/json

Successful response

The response is of type object.