Overview
The Extract Data endpoint processes PDF documents and extracts structured information based on custom schemas. This is ideal for extracting specific data points, citations, references, and structured content from documents using AI-powered analysis.
The endpoint returns a job ID for asynchronous processing. Use the job management endpoints to check status and retrieve results.
Request
The PDF file to process for data extraction. Maximum file size: 100MB
JSON schema defining the structure and fields to extract from the document. Must be a valid JSON Schema format with type definitions, properties, and required fields.
Response
Unique identifier for the extraction job
Initial job status (typically “queued”)
Descriptive message about the job creation
Number of Credits remaining in your quota
Once the job is completed, the results will contain the extracted data with additional metadata:
Each extracted field returns an object with the following structure:
[field_name].value
string|number|array|object
The extracted value matching the schema type
Confidence score between 0 and 1 indicating extraction accuracy
Array of bounding box coordinates where the data was found in the document
[field_name].bboxes[].bbox
Bounding box coordinates [x1, y1, x2, y2] in pixels
Page number where the data was extracted (1-indexed)
Minimum confidence score across all extracted fields
For a simple financial document schema:
{
"type" : "object" ,
"properties" : {
"Individuals" : {
"type" : "string" ,
"description" : "Percentage Holding"
},
"LIC of India" : {
"type" : "string" ,
"description" : "No of Shares Held"
},
"United bank of india" : {
"type" : "string" ,
"description" : "No of shares held by United bank of india"
}
},
"required" : [
"Individuals" ,
"LIC of India" ,
"United bank of india"
],
"additionalProperties" : false
}
{
"Individuals" : {
"score" : 0.9998314521743098 ,
"value" : "10.57" ,
"bboxes" : [
{
"bbox" : [
79 ,
381 ,
524 ,
565
]
}
],
"page_no" : 2
},
"LIC of India" : {
"score" : 0.9999889986487799 ,
"value" : "1515000" ,
"bboxes" : [
{
"bbox" : [
79 ,
381 ,
524 ,
565
]
}
],
"page_no" : 2
},
"United bank of india" : {
"score" : 0.999984548437705 ,
"value" : "500000" ,
"bboxes" : [
{
"bbox" : [
79 ,
381 ,
524 ,
565
]
}
],
"page_no" : 2
},
"min_confidence_score" : 0.9998314521743098
}
curl -X POST "https://prod.visionapi.unsiloed.ai/cite" \
-H "accept: application/json" \
-H "api-key: your-api-key" \
-H "Content-Type: multipart/form-data" \
-F "pdf_file=@document.pdf;type=application/pdf" \
-F "schema_data={ \" type \" : \" object \" , \" properties \" :{ \" title \" :{ \" type \" : \" string \" , \" description \" : \" Document title \" }, \" authors \" :{ \" type \" : \" array \" , \" description \" : \" List of authors \" , \" items \" :{ \" type \" : \" string \" }}}, \" required \" :[ \" title \" , \" authors \" ], \" additionalProperties \" :false}"
Success Response
Error Response
{
"job_id" : "945b4578-691f-4c74-8184-dde654093b11" ,
"status" : "queued" ,
"message" : "PDF citation processing started" ,
"quota_remaining" : 48988
}
JSON Schema Definition
The schema_data
parameter must be a valid JSON Schema that defines the structure of data to extract. All schemas must follow the JSON Schema specification with proper type definitions, properties, and constraints.
Basic Schema Structure
All extraction schemas must include:
type
: “object” (root level)
properties
: Object defining the fields to extract
required
: Array of required field names
additionalProperties
: Set to false
for strict validation
Financial Document Schema Example
This example demonstrates extracting shareholding patterns and board information from financial documents:
{
"type" : "object" ,
"properties" : {
"Individuals" : {
"type" : "string" ,
"description" : "Percentage Holding"
},
"LIC of India" : {
"type" : "number" ,
"description" : "No of Shares Held"
},
"board of directors" : {
"type" : "array" ,
"description" : "list of names of board of directors" ,
"items" : {
"type" : "object" ,
"required" : [
"names of board of directors"
],
"properties" : {
"names of board of directors" : {
"type" : "string" ,
"description" : "names of all the members of board of directors of ACRE"
}
},
"additionalProperties" : false
}
},
"shareholding pattern" : {
"type" : "array" ,
"description" : "shareholding pattern" ,
"items" : {
"type" : "object" ,
"required" : [
"name of shareholders" ,
"number of shares held"
],
"properties" : {
"name of shareholders" : {
"type" : "string" ,
"description" : "name of the shareholders in ACRE Table"
},
"number of shares held" : {
"type" : "string" ,
"description" : "numbers of shares held by shareholders in ACRE Table"
}
},
"additionalProperties" : false
}
}
},
"required" : [
"Individuals" ,
"LIC of India" ,
"board of directors" ,
"shareholding pattern"
],
"additionalProperties" : false
}
Advanced Financial Schema Example
This example shows a more complex schema for extracting detailed shareholding information:
{
"type" : "object" ,
"properties" : {
"shares held by Punjab National bank" : {
"type" : "string" ,
"description" : "shares held by Punjab National bank"
},
"shares held by IFCI" : {
"type" : "string" ,
"description" : "shares held by IFCI"
},
"shareholding pattern" : {
"type" : "object" ,
"description" : "shareholding pattern" ,
"properties" : {
"Percentage holding" : {
"type" : "array" ,
"description" : "percentage holding of shareholders in ACRE" ,
"items" : {
"type" : "string" ,
"description" : "percentage holding of shareholders in ACRE"
}
},
"Name of shareholders" : {
"type" : "array" ,
"description" : "Names of shareholders in ACRE" ,
"items" : {
"type" : "string" ,
"description" : "Names of shareholders in ACRE"
}
}
},
"required" : [ "Percentage holding" , "Name of shareholders" ],
"additionalProperties" : false
},
"names of board of directors" : {
"type" : "array" ,
"description" : "list of names of members of board of directors in ACRE" ,
"items" : {
"type" : "object" ,
"properties" : {
"names of board of directors" : {
"type" : "string" ,
"description" : "list of names of members of board of directors in ACRE"
}
},
"required" : [ "names of board of directors" ],
"additionalProperties" : false
}
}
},
"required" : [
"shares held by Punjab National bank" ,
"shares held by IFCI" ,
"shareholding pattern" ,
"names of board of directors"
],
"additionalProperties" : false
}
{
"type" : "object" ,
"properties" : {
"title" : {
"type" : "string" ,
"description" : "Document title or paper title"
},
"authors" : {
"type" : "array" ,
"description" : "List of author names" ,
"items" : {
"type" : "string"
}
},
"publication_date" : {
"type" : "string" ,
"description" : "Publication date in YYYY-MM-DD format"
},
"journal_name" : {
"type" : "string" ,
"description" : "Name of journal or publication venue"
},
"doi" : {
"type" : "string" ,
"description" : "Digital Object Identifier"
},
"abstract" : {
"type" : "string" ,
"description" : "Document abstract or summary"
},
"keywords" : {
"type" : "array" ,
"description" : "Key terms and subject keywords" ,
"items" : {
"type" : "string"
}
},
"references" : {
"type" : "array" ,
"description" : "List of cited references" ,
"items" : {
"type" : "string"
}
}
},
"required" : [ "title" , "authors" ],
"additionalProperties" : false
}
Legal Document Schema
{
"type" : "object" ,
"properties" : {
"document_type" : {
"type" : "string" ,
"description" : "Type of legal document (contract, agreement, etc.)"
},
"parties" : {
"type" : "array" ,
"description" : "Names of parties involved" ,
"items" : {
"type" : "object" ,
"properties" : {
"name" : {
"type" : "string" ,
"description" : "Party name"
},
"role" : {
"type" : "string" ,
"description" : "Party role (e.g., buyer, seller, contractor)"
}
},
"required" : [ "name" , "role" ],
"additionalProperties" : false
}
},
"effective_date" : {
"type" : "string" ,
"description" : "Document effective date"
},
"key_terms" : {
"type" : "array" ,
"description" : "Important terms and conditions" ,
"items" : {
"type" : "string"
}
},
"obligations" : {
"type" : "array" ,
"description" : "Key obligations and responsibilities" ,
"items" : {
"type" : "object" ,
"properties" : {
"party" : {
"type" : "string" ,
"description" : "Party responsible for the obligation"
},
"obligation" : {
"type" : "string" ,
"description" : "Description of the obligation"
}
},
"required" : [ "party" , "obligation" ],
"additionalProperties" : false
}
}
},
"required" : [ "document_type" , "parties" , "effective_date" ],
"additionalProperties" : false
}
JSON Schema Field Types
Text content, single values. Use for names, descriptions, dates as text.
Numeric values, amounts, quantities. Use for counts, percentages, monetary values.
Whole numbers only. Use for counts, IDs, years.
True/false values. Use for yes/no questions, flags.
Lists of items. Must include items
property defining the type of array elements.
Structured data with nested fields. Must include properties
defining nested structure.
Null values. Can be combined with other types using array notation: ["string", "null"]
Job Management Integration
After creating an extraction job, use the job management endpoints to monitor progress:
import time
import requests
def wait_for_extraction_completion ( job_id , api_key ):
"""Poll job status until completion"""
headers = { "api-key" : api_key}
status_url = f "https://prod.visionapi.unsiloed.ai/jobs/ { job_id } "
while True :
response = requests.get(status_url, headers = headers)
if response.status_code == 200 :
status_data = response.json()
print ( f "Job status: { status_data[ 'status' ] } " )
if status_data[ 'status' ] == 'completed' :
# Get results
results_url = f "https://prod.visionapi.unsiloed.ai/jobs/ { job_id } /results"
results_response = requests.get(results_url, headers = headers)
if results_response.status_code == 200 :
return results_response.json()
else :
raise Exception ( f "Failed to get results: { results_response.text } " )
elif status_data[ 'status' ] == 'failed' :
raise Exception ( f "Job failed: { status_data.get( 'error' , 'Unknown error' ) } " )
time.sleep( 5 ) # Wait 5 seconds before next check
# Usage
job_id = "945b4578-691f-4c74-8184-dde654093b11"
results = wait_for_extraction_completion(job_id, "your-api-key" )
print ( "Extraction completed:" , results)
Advanced Schema Patterns
Nested Object Structures
For complex documents with hierarchical data:
{
"type" : "object" ,
"properties" : {
"company_info" : {
"type" : "object" ,
"description" : "Company identification and basic information" ,
"properties" : {
"name" : {
"type" : "string" ,
"description" : "Full company name"
},
"ticker" : {
"type" : "string" ,
"description" : "Stock ticker symbol"
},
"sector" : {
"type" : "string" ,
"description" : "Business sector"
}
},
"required" : [ "name" ],
"additionalProperties" : false
},
"financial_data" : {
"type" : "object" ,
"description" : "Financial metrics and performance data" ,
"properties" : {
"revenue" : {
"type" : "number" ,
"description" : "Total revenue"
},
"profit_margin" : {
"type" : "number" ,
"description" : "Profit margin percentage"
}
},
"required" : [ "revenue" ],
"additionalProperties" : false
}
},
"required" : [ "company_info" , "financial_data" ],
"additionalProperties" : false
}
Array of Complex Objects
For extracting lists of structured data:
{
"type" : "object" ,
"properties" : {
"transactions" : {
"type" : "array" ,
"description" : "List of financial transactions" ,
"items" : {
"type" : "object" ,
"properties" : {
"date" : {
"type" : "string" ,
"description" : "Transaction date"
},
"amount" : {
"type" : "number" ,
"description" : "Transaction amount"
},
"description" : {
"type" : "string" ,
"description" : "Transaction description"
},
"category" : {
"type" : "string" ,
"description" : "Transaction category"
}
},
"required" : [ "date" , "amount" , "description" ],
"additionalProperties" : false
}
}
},
"required" : [ "transactions" ],
"additionalProperties" : false
}
Error Handling
Invalid JSON schema format or missing required parameters
Invalid or missing API key
File size exceeds 100MB limit
Invalid file format, malformed JSON schema, or processing error
Rate limit exceeded or quota exhausted
Server error during processing
The response is of type object
.